
I'harmacolo.~,y Biochemistry & Behavior, V o l .  9 ,  p p .  5 4 3 - 5 4 9 .  P r i n t e d  in  t h e  U . S . A .  

2-Deoxy-D-Glucose-Induced Decrements in 
Operant and Reflex Pain Thresholds 

R I C H A R D  J. B O D N A W ,  D E N N I S  D. K E L L Y ,  M A R T I N  B R U T U S ,  A L F R E D  M A N S O U R  
A N D  M U R R A Y  G L U S M A N  

Department tff'Behavioral Physiology, New York State Psychiatric Institute and 
Department of  Psychiato', Cohvnbia University, 722 West 168th Street, New York, N Y  10032 

(Rece ived  17 May 1978) 

BODNAR, R. J.. D. D. KELLY, M. BRUTUS, A. MANSOUR AND M. GLUSMAN. 2-Deo.w-D-~,,lucose-induced 
decrement.s in operant and r¢:th'x pain thresholds. PHARMAC. BIOCHEM. BEHAV. 9(4) 543-549~ 1978.--Acute expo- 
sure to many environmental stressors induces significant analgesia. The present study examined whether 2- 
deoxy-D-glucose (2-DG). an antimetabolic glucose analogue, which induces glucoprivation and peripheral sympatho- 
adrenal discharge, would also produce analgesia as measured by either an operant liminal escape or a reflex tail-pinch 
procedure. In the liminal escape paradigm, 9 rats were tested at weekly intervals in 6 randomly selected testing conditions: 
30 rain pre-test injections of four 2-DG doses ( 100, 225,350 and 700 mg/kg. IP) and 180 rain pre-test injections of the 2 higher 
doses. Moderate analgesia occurred at the lower 2-DG doses 30 rain after injection, while profound analgesia occurred at 
the higher doses. After 180 rain, only the 700 mg/kg 2-DG dose produced moderate analgesia, which was furlher enhanced 
by food deprivation. Rats tested in the tail-pinch paradigm displayed a similar dose-dependent analgesia course. These 
results demonstrate that 2-1)G decreases nociceptive sensitivity, possibly through stress-induced activation of an intrinsic 
pain-inhibitory system. 

Pain-Inhibition 2-Deoxy-D-glucose Analgesia Stress Rats 

RATS exposed to severe, novel environmental stressors 
such as inescapable foot shock, rotation, intraperitoneal in- 
jections of hypertonic saline, cold-water swims or food de- 
privation display a transient though profound behavioral 
analgesia [5, 7, 9, 26, 27, 46]. Repeated exposures to these 
same stressors result in adaptation to the analgesic effects [ 1, 
7, 8, 37] in the same manner that other stress-induced physi- 
cal responses such as pituitary-adrenocortical activation 
adapt [43]. On a neural level, acute exposure to either ines- 
capable foot shock or cold-water swims has also been shown 
to deplete brain norepinephrine levels in the rat, while re- 
peated exposures or cross-treatment between the 2 condi- 
tions does not [3, 47, 48, 55]. Recently, Ritter and Ritter [41] 
have reported that prior chronic exposure to 2- 
deoxy-D-glucose (2-DG), an antimetabolic glucose analogue 
[57], prevented depletion of brain norepinephrine induced by 
acute inescapable foot shock, suggesting that 2-DG and ines- 
capable foot shock may exert similar physiological effects 
upon the central nervous system. Like many noxious 
stimuli, acute administration of 2-DG also induces many 
stress-related physiological responses, including marked 
glucoprivation, peripheral sympatho-adrenal discharge and 
hyperglycemia [15, 29. 57]. These responses are thought to 
be caused by 2-DG's ability to selectively cross cell mem- 
branes and interfere with normal cellular metabolism. This 
mechanism is also thought to account for the increased in- 
take of food following 2-DG administration in rats [14, 44, 
50], primates [44,45] and humans [49]. 
• _ _ _  

'To whom reprints should be addressed. 

The purpose of the present study was to test whether 
2-DG, because of its stress-like properties, might also induce 
analgesia. Since stressors induce a level and duration of 
analgesia proportional to their severity [4], 2-DG might also 
be expected to produce an analgesia that was both dose- 
dependent and time-dependent. Like narcotic-, non- 
narcotic-, and stimulation-induced analgesia, stress-induced 
analgesia has been shown to be active on a wide variety of 
both reflex and operant pain threshold tests [5, 7, 31, 32, 33]. 
Accordingly, in the present experiment, the analgesic poten- 
tial of 2-DG was assessed with a reflex tail-pinch test and 
with an operant liminal escape procedure, that has been 
shown to be sensitive to both an animal's evaluation of the 
relative aversiveness of a given stimulus and its motivation 
to respond, or not, to terminate its presence [31, 32, 33]. The 
tail-pinch procedure is a rapid reflex test which yields a point 
estimate of the threshold and thus allows the close temporal 
tracking of an analgesic time course. The liminal escape test 
is a discrete trial variant [25, 34, 36] of the shock titration 
schedule devised by Weiss and Laties [51,54], but it has the 
advantage of being behaviorally more stable since the pro- 
graining of shock intensities is not left under the control of 
the animal [35,52], and thus the derived complementary 
psychophysical functions appear to reflect the integrated re- 
sponse of the organism across a broad continuum of aver- 
siveness represented by different shock intensities. Never- 
theless, since titration and liminal escape both appear to tap 
the sensory-discriminative and emotional aspects of the pain 
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response, the two procedures have been found to display a 
similar profile of pharmacologic sensitivities 122, 31, 33, 38, 
39, 53, 561. 

METHOD 

l,imimd l£~cape Testing 

Nine male albino Holtzman Sprague-Dawley rats (350- 
500 g) served in the operant liminal escape procedure. Be- 
havioral sessions were conducted in a standard operant 
chamber (BRS/LVE) 26.5 cm high with a 30×24 cm grid 
floor composed of 14 grid bars (0.6 cm dia.) spaced 1.9 cm 
apart. A lever, mounted 7 cm above the floor and protruding 
2 cm into the chamber, served as the response manipulan- 
dum and required a dead weight force of 24 g for closure. 
Constant current, square-wave shocks with a 200-Hz fre- 
quency were delivered via a 14-pole scrambler through the 
grids. 

Initially each rat was shaped by the method of successive 
approximations to depress the lever to terminate a train of 
pulsed foot shocks delivered at a rate of 300 msec on/300 
msec off. Following this shaping session, each animal was 
exposed over a 9-session sequence to an identical series of 
increasingly stringent escape contingencies which gradually 
approached the terminal fixed ratio liminal escape schedule. 
Pulsed foot shocks were delivered for 10 sec unless the rat 
depressed the lever 3 times to abbreviate the shock train and 
initiate a 20-sec intertrial interval. A session consisted of 100 
such trials distributed over 5 shock intensities: 0.2, 0.4, 0.6, 
0.8, 1.0 mA. The shock intensity was switched every 4 trials 
so that over every 20 trials the rat was exposed to all 5 
intensities. The order of shock intensities within successive 
20-trial blocks was determined by a Latin Square design in 
which each intensity occupied a given ordinal position only 
once and in which no transition was ever repeated. The first 
20 trials of each session were recorded separately to allow 
for warm-up and these less stable data are not included in the 
present analysis. From the last 80 trials of each session, the 
probability of escape and the amount of time spent in shock 
for each shock intensity were recorded as well as the time 
spent depressing the lever during the intertrial interval. 

After 10 daily 100-trial sessions, rats were placed on a 2 
session per week schedule for 7 weeks. Each pair of sessions 
occurred on successive days, the first always programmed as 
a placebo or control day, the second as an experimental drug 
session. On successive weekly drug days, animals were in- 
jected intraperitoneally with 1 of 4 doses of 2-DG (I(X), 225, 
350 or 700 mg 2-DG/2 ml sterile water/kg body weight). On 4 
of the test weeks, one at each dose, liminal escape sessions 
were begun 30 min following injections. On 2 other weeks, 
sessions were programmed 180 min following injections of 
350 and 700 mg/kg. On the paired control days, placebo in- 
jections (2 ml sterile water/kg body weight, IP) preceded test 
sessions by similar periods. Normally food and water were 
available to the animals at all times, except during liminal 
escape sessions. However, on 1 test week, food was ex- 
plicitly denied the animal during the interval between an in- 
jection of 2-DG at 700 mg/kg and a test session 180 min later. 
The weekly order of these 7 test conditions was randomly 
selected for each animal. 

7~til-l>i~tch lhre.~hold 

The tail-pinch thresholds for 6 naive male albino rats were 

determined by delivering pressure 8 cm proximal from the tip 
of the tail at a linearly increasing rate with a motor-driven 
analgesy meter (Ugo-Basile, Milan). The minimal pressure 
which elicited either tail withdrawal and/or hindlimb struggl- 
ing in the experimenter 's grasp served as the dependent vari- 
able. During each experimental session, threshold determi- 
nations were made immediately prior to and 30, 60, 120 and 
180 min following an injection. On 6 successive weekly ses- 
sions, each rat was injected with either I of 4 doses of 2-DG 
~1(~), 200, 400 or 600 mg/2 ml sterile water/kg body weight, 
IP) or 2 placebo conditions. The order of the 6 conditions 
was randomly determined and the experimenter conducting 
the tail-pinch procedure was uninformed as to the specific 
experimental condition. 

RESULTS 

2-DG elevated operant liminal escape thresholds in an 
orderly dose-dependent fashion 30 min following injection. 
Figure 1 displays the decrease in escape probability 30 rain 
following each of the four 2-DG dose levels: similar, com- 
plementary increases in the time spent in shock were ob- 
served. It is clear that this dose-dependent analgesic rela- 
tionship was transient as Fig. 2 shows a return toward 
placebo levels 180 min following the two highest 2-DG doses. 
An analysis of variance, using the 9 rats in each injection 
condition as a repeated measure, showed significant de- 
creases in escape probability across 2-DG injection dose and 
time conditions, F(8,360)= 18.37, p<0.01, across liminal es- 
cape shock intensities, F(4,360)= 140.53, p~ :0.01, and for the 
injection x intensity interaction, F(32,360)=2.07, p-:-~0.()l. 
Significant, complementary increases in time spent in shock 
were observed across 2-DG injection conditions, F(8,360) 
=p.,:0.01, across shock intensities, F(4,360)- 158.27, 

p¢~0.01, and for their interaction, F(32,360)=2.30, p~0.01. 
A postedori Tukey comparisons, as summarized in 
Table 1, indicated that whereas the 2 lower 2-DG doses 
induced mild decrements in escape responding 30 rain 
following injection, the 350 and 700 mg/kg 2-DG doses 
produced significant reductions in escape responding. De- 
spite the escape decrements at the latter doses, normal 
motor (ambulation and posture) was noted following the 350 
mg/kg dose, while moderate ataxia was observed at 700 
mg/kg. Even so, this 2-DG induced ataxia did not interfere 
with ongoing operant escape responding, since all rats dis- 
played an intensity-dependent pattern of escape responding 
over all experimental conditions with the probability of es- 
cape always showing a systematic increase as a function of 
stimulus intensity. This suggests that orderly shifts in escape 
thresholds, rather than random fluctuations, occurred fol- 
lowing acute 2-DG injections and is not indicative of severe 
non-specific motor deficits which would induce random es- 
cape behavior independent of stimulus intensity tracking. 

The 2-DG-induced decrease in nociceptive sensitivity wa, s 
time-dependent as well as dose-dependent. The 350 mg/kg 
2-DG dose, which induced profound analgesia across all 
shock intensities 30 min following injection, produced no 
discernable changes in nociceptive sensitivity when adminis- 
tered 180 min prior to testing. Similarly, the 700 mg/kg dose 
which produced severe escape decrements 30 min following 
injection, induced significant, yet moderate residual 
analgesia when administered 180 min prior to testing. 

Further enhancements of liminal escape deficits were 
produced in the food-deprivation and 700 mg/kg of 2-DG 1700 
mg/kg~-injection condition, suggesting a synergy between 
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FIG. l. Dose-dependent  al terat ions in liminal escape probability 
across  shock intensities 30 min following 2-deoxy-D-glucose (2-1)GI 
administrat ion.  The mean I+_SEMI of all placebo condit ions is dis- 

played as a standard.  

endogenous (2-DG) and exogenous (deprivation) hunger 
signals. Significant decreases in escape responding following 
this manipulation were observed across intermediate shock 
intensities as compared to placebo control, the food- 
deprivation placebo control, 0.4: t(8)=3.21, p<0.05;  0.6: 
F(8) = 3.21, p <0.05, and the 2-DG (700 mg/kg) injected alone, 
0.4: t(8)=2.04, 0. l>p>0 .05 ;  0.6: t(8)=2,54, p<0,05;  0.8: 
t(8)= 1.92, 0. I>p>0.05  conditions. 

"The percentage of time spent by the rats depressing the 
lever during the intertrial interval also differed following 
2-DG injections, F(8.72)=2.35, p<0.05.  This intertrial de- 
pression on the lever is typical of escape performance in the 
albino rat [20] and is normally interpreted as either a pre- 
paratory response 117,21 ], a perseverative response [301, or a 
species-specific defense reaction 112,13]. Averaged across 
all placebo sessions the rats spent half of their time between 
shock trials in continuous contact with the lever (50.28~). 
Table 2 summarizes the percentages across drug conditions. 
In general, the decreased bar-holding noted following 2-DG 
injections did not correspond with the analgesia induced by 
the same injections. For  instance, at 30 min following 2-DG 
administration, rats receiving the non-analgesic 100 mg/kg 
dose and the analgesic 350 mg/kg dose both displayed signifi- 
cant decreases in bar-holding. Also. at 180 min following 
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FIG. 2. Alterations in liminal escape probability across  shock inten- 
sities 180 min following administrat ion of  350 mg/kg and 7 ~  mWkg 
of  2-deoxy-D-glucose ~2-DG). The effects of  food deprivation during 
the 180 rain between 0 or 7~) mWkg 2-DG injections and the test 
session are also shown.  The mean ~ t S E M )  of  all placebo condit ions 

is displayed as a s tandard.  

2-DG administration, both the analgesic 700 mg/kg rats and 
the analgesic 700 mg/kg plus food deprivation rats showed 
normal bar holding patterns, t(8)=0.25. 

Figure 3 displays the similar dose-dependent elevations in 
reflex tail-pinch thresholds following acute 2-DG adminis- 
tration. A two-way analysis of variance, using the pre- 
injection difference scores at each test interval, revealed 
significant elevations in the amount of pressure necessary to 
elicit a withdrawal response across 2-DG and placebo injec- 
tion conditions, F(3,120)=2.38, p~0.05,  but not for the post- 
injection time course, F(3,120)=0.51. Tukey post-hoe com- 
parisons demonstrate that whereas the 2 lower 2-DG doses 
induced mild, though nonsignificant elevations, I00 mg/kg: 
t(23)= 1.06; 200 mg/kg: t(23)= 1.27 in tail-pinch thresholds, 
the 2 higher 2-DG doses induced profound and significant 
tail-pinch threshold elevations. 400 mg/kg: t(23)=2.89, 
p<0.01;  600 mg/kg: t(23)-.2.37, p<:0.05 that persisted over 
the 3-hr post-injection time course. 

D I S C U S S I O N  

It is apparent from :he present results that 2-DG produces 
dose-dependent elevations in both operant liminal escape 
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pituitary-adrenal and sympatho-medullary axes 115, 29, 57] 
the present data are consistent with previous observations 
that acute exposure to physiological stressors produces 
analgesia [I, 5, 7, 9, 26, 27.37, 46]. However, 2-DG does not 
seem to be a painful stressor in the same sense as cold-water 
swims, forced rotation and inescapable loot shock, yet it still 
induces a comparable level and time course of analgesia. 
Thus, along with the elevations in pain thresholds induced by 
unexpected food deprivation [9,46], these data suggest that 
stressors need not be painful to prompt analgesia. Indeed, 
from the present data, it also appears that these latter stres- 
sors can potentiate each other's analgesic effects when 
combined and suggest a synergy between exogenous and 
endogenous means of inducing the stress-related and pain- 
inhibitory consequences of hunger signals. 

It is especially compelling that 2-DG and other stressors 
which induce analgesia share the property of activating both 
the central hypothalamic and peripheral pituitary-adremd 
axes. The mechanism by which analgesia might be produced 
by activating this intrinsic pain-inhibitory system is still un- 
clear, but several recent empirical observations have nar- 
rowed the possibilities. First peripheral endorphins may be 
involved since, in response to severe injury stress, ad- 
renocorticotropin and /3-endorphin are released concomit- 
antly by the pituitary [24]. Moreover, following inescapable 
foot shock stress,/3-endorphin levels increase in blood, but 
not brain tissue [42]. However, stress-induced alterations in 
central opiate activity and their subsequent role in stress- 
induced analgesia have been less clear cut. Some studies 
have reported increased brain opiate receptor binding factor 
[1, 18, 37] and decreased :~H-leu-enkephalin binding [19] fol- 
lowing inescapable foot shock while another has reported 
unaltered :¢H-met-enkephalin levels in brain [23] following 
the identical stressor. Further behavioral evidence suggests 
that stress-induced analgesia may not be opiate-related: (a) 
cold-water stress-induced and morphine-induced analgesia 
fail to develop cross-tolerance [11]; (b) naloxone only par- 
tially reverses inescapable foot shock-induced and cold- 
water swim-induced analgesia [I, 6, 7, 10, 27] and (c) dor- 
solateral spinal cord lesions, which attenuate both opiate and 
stimulation-induced analgesia [2, 28, 40] fail to alter foot 
shock-induced analgesia [28,40]. Second, hypophysec- 
tomized animals display a sharply attenuated analgesia fol- 
lowing acute exposure to cold-water swims [4] and to ines- 
capable foot shock (A. Pert, personal communication, 1978). 
Third, other data from our laboratory indicate that whereas 
chronic 2-DG administration is still accompanied by an in- 
creased food intake, adaptation develops to the pain 
threshold elevations, in much the same manner that both 
cold-water swim-induced and inescapable foot shock- 
induced analgesia adapt and that the array of other physi- 
ological responses to stress adapt [16]. 

Exposure to stressful situations has long been known to 
induce a profile of physiological adaptations, or stress reac- 
tions. The present and other recent data suggest that a tem- 
porary decline in sensitivity to pain may also be one of the 
body's normal responses to stress. Thus, in addition to 
well-documented central neural changes in sympathetic 
arousal and pituitary-adrenal activation, another coping re- 
sponse cued by the nervous system may be the activation of 
a pain-modulating system which dampens normal reactions 
to pain during periods of stress. 
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